

 Navigation

 	
 index

 	
 next |

 	django-usersettings 0.1 documentation

django-usersettings 0.1 documentation

This documentation covers the 0.1 release of django-usersettings, a
simple pluggable application to manage user settings
for Django [http://www.djangoproject.com]-powered
websites.

Your apps can define and register user settings:
configuration users can manage to specify
how they’d like your site to work.
Helpers are provided for standard setting patterns,
functions for changing settings
and form factories to serve your users with.

To get up and running quickly, consult the quick-start guide, which describes all the necessary steps to install
django-usersettings and start using user settings. For
more detailed information read through
the documentation listed below.

Contents:

	Quick start guide

	Releases

	Defining settings

	Using settings

	Generating forms

	Views

	Frequently asked questions

See also

	The source code [http://www.bitbucket.org/Blue/django-usersettings/],
to find out about django-usersettings internals.

 Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-usersettings 0.1 documentation

Quick start guide

As this is an app for websites built on the Django framework,
you’ll need to have that installed.
The minimum required versions are Python 2.5 (no python 3 support yet)
and Django 1.2.
To store the settings, you’ll need a database.
Any database that’s supported by Django ORM
will do.

Installing django-usersettings

There are several ways to install django-usersettings:

	Automatically, via a package manager.

	Manually, by downloading a copy of the release package and
installing it yourself.

	Manually, by performing a Mercurial checkout of the latest code.

It is also highly recommended that you learn to use virtualenv [http://pypi.python.org/pypi/virtualenv] for development and
deployment of Python software; virtualenv provides isolated Python
environments into which collections of software (e.g., a copy of
Django, and the necessary settings and applications for deploying a
site) can be installed, without conflicting with other installed
software. This makes installation, testing, management and deployment
far simpler than traditional site-wide installation of Python
packages.

Automatic installation via a package manager

Several automatic package-installation tools are available for Python;
the most popular are easy_install [http://peak.telecommunity.com/DevCenter/EasyInstall] and pip [http://pip.openplans.org/]. Either can be used to install
django-usersettings.

Using easy_install, type:

easy_install -Z django-usersettings

Note that the -Z flag is required, to tell easy_install not to
create a zipped package; zipped packages prevent certain features of
Django from working properly.

Using pip, type:

pip install django-usersettings

It is also possible that your operating system distributor provides a
packaged version of django-usersettings. Consult your
operating system’s package list for details, but be aware that
third-party distributions may be providing older versions of
django-usersettings, and so you should consult the documentation which
comes with your operating system’s package.

Manual installation from a downloaded package

If you prefer not to use an automated package installer, you can
download a copy of django-usersettings and install it manually. The
latest release package can be downloaded from django-usersettings’s
listing on the Python Package Index [http://pypi.python.org/pypi/django-usersettings/].

Once you’ve downloaded the package, unpack it (on most operating
systems, simply double-click; alternately, type tar zxvf
django-usersettings-0.1.tar.gz at a command line on Linux, Mac OS X
or other Unix-like systems). This will create the directory
django-usersettings-0.1, which contains the setup.py
installation script. From a command line in that directory, type:

python setup.py install

Note that on some systems you may need to execute this with
administrative privileges (e.g., sudo python setup.py install).

Manual installation from a Mercurial checkout

If you’d like to try out the latest in-development code, you can
obtain it from the django-usersettings repository, which is hosted at
Bitbucket [http://bitbucket.org/] and uses Mercurial [http://www.selenic.com/mercurial/wiki/] for version control. To
obtain the latest code and documentation, you’ll need to have
Mercurial installed, at which point you can type:

hg clone http://bitbucket.org/Blue/django-usersettings/

You can also obtain a copy of a particular release of
django-usersettings by specifying the -r argument to hg clone;
each release is given a tag of the form vX.Y, where “X.Y” is the
release number. So, for example, to check out a copy of the 0.1
release, type:

hg clone -r v0.1 http://bitbucket.org/Blue/django-usersettings/

In either case, this will create a copy of the django-usersettings
Mercurial repository on your computer; you can then add the
django-usersettings directory inside the checkout your Python
import path, or use the setup.py script to install as a package.

Basic configuration and use

Once installed, you can add django-usersettings to any Django-based
project you’re developing.
Begin by adding usersettings to the INSTALLED_APPS setting of
your project.
This is enough to get started.
For more control, there are a few settings to customize things.

	USERSETTINGS_DATABASE_ALIAS

	This optional settings can be set to the name of a database alias
to store the settings in.
The default is to store settings in a the default database.

	USERSETTINGS_GROUPING_SEPARATOR

	A character (or string, if you’d want) that marks
the grouping elements of a setting grouping string.
This defaults to a colon (:),
resulting in grouping strings like formatting:datetime:dates.
Set it to whatever you want if you happen to find that notation perverse.
These groupings can be used to filter loading settings.

	USERSETTINGS_CACHE_ALIAS

	Set this to the alias of a cache to speed up setting retrieval.
Omitting this, or setting it to None will deactivate
caching settings.

	USERSETTINGS_CACHE_KEY_FORMAT

	When caching settings, this is the format for the keys
used to store cached settings.
This uses the new string formatting available since python 2.6.
The arguments passed are user and name.
The default value used is usersettings_{user.id}_{name}.
You should always include both a unique field of the
user and the setting name to ensure that the keys are
one-to-one mappings to user settings.

Setting up URLs

The app includes a Django URLconf which sets up URL patterns
for the views in django-usersettings.
This URLconf can be found at usersettings.urls,
and so can simply be included in your project’s root URL configuration.
For example, to place the URLs under the prefix /settings/,
you could add the following to your project’s root URLconf:

(r'^settings/', include('usersettings.urls')),

This would then be the index page for managing settings.
To completely customize the url locations,
add the urlpatterns for the included views yourself.
If you go down this road, do make sure that the url names
are still the same.

Templates

When you use the builtin views, and you don’t specify
custom locations for the templates (like when including
the builtin usersettings.urls patterns as described above)
make sure you create the following templates.

Note that all of these are
rendered using a RequestContext and so will also receive any
additional variables provided by context processors [http://docs.djangoproject.com/en/dev/ref/templates/api/#id1].

usersettings/form.html

Used to show the form users will update their settings with.

	form

	The form instance to display to the user.

Using settings

Only thing that rests is defining settings and using them.
Settings are defined by subclassing a base class called
usersettings.Setting.
Three method must be implemented;
one that gives the default value for a setting
and two others that convert a setting object (anything you want it to be)
into a string to save to the database.
Additionally, you’ll have to specify a name for the setting.
This will be the name to retrieve the setting by.
The verbose_name and description attributes
are optional, they are used in the builtin views
to generate pretty forms.

from django.utils.translation import ugettext_lazy as _
from usersettings import Setting, register

class WelcomeMessageSetting(Setting):
 name = 'welcome_message'
 verbose_name = _("welcome message")
 description = _("The message you'd like to see when you enter the website.")

 def encode(self, user, setting):
 "Turn the setting object in a string to store in the database."
 return setting

 def decode(self, user, value):
 "Turn the stored string into the setting object."
 return value

 def default(self, user):
 "The default setting object."
 return 'Welcome {}'.format(user)

register.register(WelcomeMessageSetting)

To allow this to be used in automatically generated forms
or the included views, you should also implement two
additional methods.
The formfield you generate does not need to have a label or a help_text
if you specified the verbose_name and description attributes
on the Setting subclass.

from django import forms
from usersettings import Setting

class WelcomeMessageSetting(Setting):

 # ...

 def form_field(self, user):
 "Get a dict of formfields to change this setting."
 return forms.CharField()

 def encode_form_data(self, user, data):
 "Turn the form data into the string to store in the database."
 return self.encode(user, data)

If your setting requires several formfields to specify,
use Django’s MultiValueField.

This example was intentionally very simplictic.
Since the setting object is a string, the decoding and encoding
does not require any work.

If you want to use custom python objects as setting values,
you might like to use the PickleSetting subclass of Setting
since it does not have the requirement that the raw database stored
object that decode and encode use, is a string.
To illustrate that the setting object can be any python object,
the following example is a trimmed version of the included
usersettings.contrib.FilesizeFormatSetting:

class FilesizeFormatSetting(PickleSetting):

 def encode(self, user, setting):
 if isinstance(setting, tuple) and len(setting) == 2:
 return setting
 else:
 raise ValueError

 def decode(self, user, value):
 def filesize_formatter(filesize):
 if filesize == 0:
 return '0 B'
 base = 1024 if value[1] else 1000
 # compute, and set result to the format
 return format
 return filesize_formatter

 def default(self, user):
 return (1024, True)

 def form_field(self, user):
 return MultiValueField(fields=[
 IntegerField(label=''),
 BooleanField(label='binairy prefixes', blank=True),
])

 Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-usersettings 0.1 documentation

Releases

usersettings 0.1

The initial release

 Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-usersettings 0.1 documentation

Defining settings

 Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-usersettings 0.1 documentation

Using settings

 Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-usersettings 0.1 documentation

Generating forms

 Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-usersettings 0.1 documentation

Views

 Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	django-usersettings 0.1 documentation

Frequently asked questions

These are some of the questions I’ve gotten about this project.

	This is pretty awesome

	Ok, this is not really a question, but let me give it a go.
Yes, it most certainly is!

 Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	django-usersettings 0.1 documentation

Index

 Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		django-usersettings 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2012, Alexander van Ratingen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

